3.10.10 \(\int (d x)^m \sqrt {c x^2} (a+b x) \, dx\)

Optimal. Leaf size=59 \[ \frac {a \sqrt {c x^2} (d x)^{m+2}}{d^2 (m+2) x}+\frac {b \sqrt {c x^2} (d x)^{m+3}}{d^3 (m+3) x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {15, 16, 43} \begin {gather*} \frac {a \sqrt {c x^2} (d x)^{m+2}}{d^2 (m+2) x}+\frac {b \sqrt {c x^2} (d x)^{m+3}}{d^3 (m+3) x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*Sqrt[c*x^2]*(a + b*x),x]

[Out]

(a*(d*x)^(2 + m)*Sqrt[c*x^2])/(d^2*(2 + m)*x) + (b*(d*x)^(3 + m)*Sqrt[c*x^2])/(d^3*(3 + m)*x)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int (d x)^m \sqrt {c x^2} (a+b x) \, dx &=\frac {\sqrt {c x^2} \int x (d x)^m (a+b x) \, dx}{x}\\ &=\frac {\sqrt {c x^2} \int (d x)^{1+m} (a+b x) \, dx}{d x}\\ &=\frac {\sqrt {c x^2} \int \left (a (d x)^{1+m}+\frac {b (d x)^{2+m}}{d}\right ) \, dx}{d x}\\ &=\frac {a (d x)^{2+m} \sqrt {c x^2}}{d^2 (2+m) x}+\frac {b (d x)^{3+m} \sqrt {c x^2}}{d^3 (3+m) x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 38, normalized size = 0.64 \begin {gather*} \frac {x \sqrt {c x^2} (d x)^m (a (m+3)+b (m+2) x)}{(m+2) (m+3)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m*Sqrt[c*x^2]*(a + b*x),x]

[Out]

(x*(d*x)^m*Sqrt[c*x^2]*(a*(3 + m) + b*(2 + m)*x))/((2 + m)*(3 + m))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.35, size = 0, normalized size = 0.00 \begin {gather*} \int (d x)^m \sqrt {c x^2} (a+b x) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(d*x)^m*Sqrt[c*x^2]*(a + b*x),x]

[Out]

Defer[IntegrateAlgebraic][(d*x)^m*Sqrt[c*x^2]*(a + b*x), x]

________________________________________________________________________________________

fricas [A]  time = 1.52, size = 44, normalized size = 0.75 \begin {gather*} \frac {{\left ({\left (b m + 2 \, b\right )} x^{2} + {\left (a m + 3 \, a\right )} x\right )} \sqrt {c x^{2}} \left (d x\right )^{m}}{m^{2} + 5 \, m + 6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(c*x^2)^(1/2)*(b*x+a),x, algorithm="fricas")

[Out]

((b*m + 2*b)*x^2 + (a*m + 3*a)*x)*sqrt(c*x^2)*(d*x)^m/(m^2 + 5*m + 6)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(c*x^2)^(1/2)*(b*x+a),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(x)]Undef/Unsigned Inf encountered in limit

________________________________________________________________________________________

maple [A]  time = 0.00, size = 40, normalized size = 0.68 \begin {gather*} \frac {\left (b m x +a m +2 b x +3 a \right ) \sqrt {c \,x^{2}}\, x \left (d x \right )^{m}}{\left (m +3\right ) \left (m +2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(c*x^2)^(1/2)*(b*x+a),x)

[Out]

x*(b*m*x+a*m+2*b*x+3*a)*(d*x)^m*(c*x^2)^(1/2)/(m+3)/(m+2)

________________________________________________________________________________________

maxima [A]  time = 1.52, size = 39, normalized size = 0.66 \begin {gather*} \frac {b \sqrt {c} d^{m} x^{3} x^{m}}{m + 3} + \frac {a \sqrt {c} d^{m} x^{2} x^{m}}{m + 2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(c*x^2)^(1/2)*(b*x+a),x, algorithm="maxima")

[Out]

b*sqrt(c)*d^m*x^3*x^m/(m + 3) + a*sqrt(c)*d^m*x^2*x^m/(m + 2)

________________________________________________________________________________________

mupad [B]  time = 0.21, size = 39, normalized size = 0.66 \begin {gather*} \frac {x\,{\left (d\,x\right )}^m\,\sqrt {c\,x^2}\,\left (3\,a+a\,m+2\,b\,x+b\,m\,x\right )}{m^2+5\,m+6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(c*x^2)^(1/2)*(a + b*x),x)

[Out]

(x*(d*x)^m*(c*x^2)^(1/2)*(3*a + a*m + 2*b*x + b*m*x))/(5*m + m^2 + 6)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \begin {cases} \frac {\int \frac {a \sqrt {c x^{2}}}{x^{3}}\, dx + \int \frac {b \sqrt {c x^{2}}}{x^{2}}\, dx}{d^{3}} & \text {for}\: m = -3 \\\frac {\int \frac {a \sqrt {c x^{2}}}{x^{2}}\, dx + \int \frac {b \sqrt {c x^{2}}}{x}\, dx}{d^{2}} & \text {for}\: m = -2 \\\frac {a \sqrt {c} d^{m} m x x^{m} \sqrt {x^{2}}}{m^{2} + 5 m + 6} + \frac {3 a \sqrt {c} d^{m} x x^{m} \sqrt {x^{2}}}{m^{2} + 5 m + 6} + \frac {b \sqrt {c} d^{m} m x^{2} x^{m} \sqrt {x^{2}}}{m^{2} + 5 m + 6} + \frac {2 b \sqrt {c} d^{m} x^{2} x^{m} \sqrt {x^{2}}}{m^{2} + 5 m + 6} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(c*x**2)**(1/2)*(b*x+a),x)

[Out]

Piecewise(((Integral(a*sqrt(c*x**2)/x**3, x) + Integral(b*sqrt(c*x**2)/x**2, x))/d**3, Eq(m, -3)), ((Integral(
a*sqrt(c*x**2)/x**2, x) + Integral(b*sqrt(c*x**2)/x, x))/d**2, Eq(m, -2)), (a*sqrt(c)*d**m*m*x*x**m*sqrt(x**2)
/(m**2 + 5*m + 6) + 3*a*sqrt(c)*d**m*x*x**m*sqrt(x**2)/(m**2 + 5*m + 6) + b*sqrt(c)*d**m*m*x**2*x**m*sqrt(x**2
)/(m**2 + 5*m + 6) + 2*b*sqrt(c)*d**m*x**2*x**m*sqrt(x**2)/(m**2 + 5*m + 6), True))

________________________________________________________________________________________